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We report the development of rigorously validated quantitative structure-activity relationship
(QSAR) models for 48 chemically diverse functionalized amino acids with anticonvulsant
activity. Two variable selection approaches, simulated annealing partial least squares (SA-
PLS) and k nearest neighbor (kNN), were employed. Both methods utilize multiple descriptors
such as molecular connectivity indices or atom pair descriptors, which are derived from two-
dimensional molecular topology. QSAR models with high internal accuracy were generated,
with leave-one-out cross-validated R2 (q2) values ranging between 0.6 and 0.8. The q2 values
for the actual dataset were significantly higher than those obtained for the same dataset with
randomly shuffled activity values, indicating that models were statistically significant. The
original dataset was further divided into several training and test sets, with highly predictive
models providing q2 values greater than 0.5 for the training sets and R2 values greater than
0.6 for the test sets. These models were capable of predicting with reasonable accuracy the
activity of 13 novel compounds not included in the original dataset. The successful development
of highly predictive QSAR models affords further design and discovery of novel anticonvulsant
agents.

Introduction

Epilepsy is a cluster of symptoms arising from dys-
functional events in the brain that are characterized by
recurrent seizures produced by paroxysmal excessive
neuronal discharges.1,2 A diverse set of antiepileptic
agents exist that exert seizure control by targeting
different neurological pathways.3-5 Unfortunately, these
therapies are ineffective for more than a third of
patients with epilepsy,6 documenting the need for new
agents with different mechanisms of action.

In recent years, we7 and others8,9 have advanced a
novel series of anticonvulsant agents that are termed
functionalized amino acids (FAA). The target(s) of FAA
function has not been identified. Nearly 250 FAA have
been prepared and evaluated in animal seizure models.
Of these, 12 provided protection against maximal elec-
troshock (MES) induced seizures10,11 at doses compa-
rable to or better than those for phenytoin.12 The MES
test is a proven method for the identification of new drug
candidates for partial and generalized seizures. While
our studies have provided structural patterns beneficial
for FAA activity, it has become increasingly difficult to
formulate a useful SAR because the diversity of molec-
ular structures has increased. Accordingly, a need exists
for reliable molecular models that facilitate the under-
standing of the pharmacological data and permit the
development of novel anticonvulsants. Since the struc-
ture of macromolecular targets of FAA action remains

unknown, ligand-based methods of analysis, such as
pharmacophore mapping and quantitative structure-
activity relationships (QSAR), represent the most ef-
ficient approaches to the design of new FAA.

Several QSAR studies correlating structure with
anticonvulsant activity have been reported.13 Most have
focused on specific drug classes including analogues of
valproic acid,13 propofol,14 2-benzothiazolamines,15 bar-
biturates,16 hydantoins,17 carbamates,18 and arylpip-
erazines.19 In 2000, Estrada and Peña reported a study
based on a topological substructural molecular design
(TOSS-MODE) approach for 235 compounds of diverse
structure that included 87 clinically tested anticonvul-
sants.20 The method discriminated between active and
inactive anticonvulsant compounds with 88% accuracy
and permitted identification of structural fragments
important for bioactivity. However, this method would
not allow ranking of active anticonvulsant agents with
respect to their relative potency. We sought a compu-
tational approach that would not only provide a higher
degree of predictive power but would also afford a
quantitative prediction of the anticonvulsant activity.
Thus, we chose to apply a QSAR approach to a limited
set of FAA compounds that were likely to function by
similar biochemical pathways.

Many QSAR approaches have been developed over the
years. The rapid increase in structural three-dimen-
sional (3D) information of bioorganic molecules,21,22

coupled with the development of fast methods for 3D
structure generation (e.g., CONCORD23,24) and align-
ment (e.g., active analogue approach25,26), has led to the
development of 3D structural descriptors and associated
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3D QSAR methods (several recent reviews on 3D QSAR
can be found in ref 27).

Most 3D QSAR methods, such as comparative molec-
ular field analysis (CoMFA),28 implement the pharma-
cophore concept, which is central to the rational drug
design and discovery process. Traditionally, a pharma-
cophore is defined by the specific and characteristic 3D
arrangement of chemical functional groups found in
active molecules. However, the detection of a unique 3D
pharmacophore and the unambiguous alignment of
active molecules necessary to conduct a CoMFA study
are difficult, if not impossible, for structurally diverse
compounds. Recently, by analogy with 3D pharmacoph-
ores, we have introduced a more general concept of the
descriptor pharmacophore (summarized in ref 29). The
descriptor pharmacophores are defined by the means
of variable selection QSAR as a subset of molecular
descriptors that afford the most statistically significant
structure-activity correlation. The q2-GRS30 method
developed earlier in our laboratory is an example of
variable selection applied to 3D descriptors (i.e., molec-
ular fields) of molecular structure. We have also dem-
onstrated that QSAR analysis methods with 2D descrip-
tors (termed 2D QSAR) can provide a powerful altern-
ative to 3D QSAR.31-33

A major benefit of 2D compared to 3D QSAR methods
is that the former neither requires conformational
search nor structural alignment. Accordingly, 2D QSAR
methods are easily automated and adapted to the task
of database searching, or virtual screening.34 These
considerations led us to develop two variable selection
QSAR algorithms: genetic algorithm or simulated an-
nealing partial least squares (GA/SA-PLS)31,34,35 and
k-nearest-neighbor (kNN)32,34 analyses. Typically, these
methods employ multiple descriptors derived from 2D
molecular topology (e.g., molecular connectivity indices
or atom pair descriptors), which eliminates the confor-
mational and alignment ambiguities inherent to most
3D QSAR methods. Stochastic optimization algorithms
such as GA or SA are used to achieve a robust QSAR
model that is characterized by the highest value of cross-
validated R2 (q2). By default, the descriptor pharma-
cophore represents an optimal selection of descriptors
types (cf., invariant selection of traditional pharma-
cophoric elements); however, for structurally dissimilar
molecules, descriptor values are generally different.
These methods are computationally efficient and auto-
mated and have been used to produce predictive mod-
els32,35 that are comparable to, or better than, those
obtained with CoMFA.

In this paper, we have applied kNN and SA-PLS
QSAR approaches to a dataset of 48 FAA anticonvul-
sants that were synthesized previously (cf., Table 1).
Our objective was to develop robust, validated QSAR
models suitable for the discovery and design of new
anticonvulsant agents. High q2 value for the training
set has been often considered sufficient criteria of QSAR
model accuracy. However, we have demonstrated re-
cently36 that a high value of q2 alone does not guarantee
the acceptable predictive ability of a QSAR model. All
QSAR models developed herein have been extensively
validated using several criteria of robustness and ac-
curacy.36 The models were successfully tested by ac-
curate prediction of anticonvulsant activity for a new

set of 13 FAA that formed an external validation set.
The QSAR models developed and validated in this study
can be used to screen large databases or virtual libraries
for new anticonvulsant agents.

Methods

Chemistry and Anticonvulsant Activities. The
structures and in vivo activities of 48 racemic FAA
anticonvulsant agents used in this study are listed in
Table 1. We used the experimentally determined ED50
values (mg/kg) obtained in the MES-seizure-induced
assay in mice (ip). No allowances were made for
potential differences in the transport or metabolic
properties of FAA, although these features may influ-
ence the measured ED50 values. Table 2 shows the
structures and activities for compounds in the external
test set that were not known prior to this QSAR study.
For QSAR calculations, the compound weight per ani-
mal weight (mg/kg) values were converted to µmol/
animal weight (µmol/kg) units (Tables 1 and 2).

The synthetic route for FAA 49 and 50 is outlined in
Scheme 1. N-Acetyl-DL-R-aminobutyric acid37 (62) was
coupled to benzylamine using the mixed-anhydride
coupling (MAC) procedure7j,38 to afford 49 in 90% yield.
The preparation of 50 and its amine precursor 59
started with commercially available Cbz-DL-norvaline
(63) (Cbz-DL-Nva). Treatment of Cbz-Nva (63) with
benzylamine using MAC7j,38 methodology provided 64.
Removal of the Cbz group (H2, Pd/C) followed by
N-acetylation of 59 with Ac2O, TEA, and DMAP (cat.)
afforded 50 in 79% overall yield (three steps).

Scheme 2 details the preparative route for FAA 56-
58. Treatment of 6539 with propionyl chloride afforded
57 in 71% yield, while addition of acryloyl chloride to
65 gave 58 in 83% yield. Formylation of 65 with
N-(diethylcarbamoyl)-N-methoxyformamide40 provided
56 in 93% yield.

Computational Details

Generation of Molecular Descriptors. All chemi-
cal structures were generated using SYBYL software.41

Multiple descriptors derived from 2D molecular topology
were used. Molecular topological indices42,43 were gener-
ated with the MolConnZ program (MZ descriptors).44

Overall, MolConnZ produces over 400 different descrip-
tors. Most of these descriptors characterize chemical
structure, but several depend on the arbitrary number-
ing of atoms in a molecule and are introduced solely for
bookkeeping purposes. In our study, only 312 chemically

Scheme 1. Preparation of 49 and 50
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relevant descriptors were initially calculated and 189
descriptors were eventually used (after deleting descrip-
tors with zero value or zero variance).

Atom pair descriptors (AP)45 were obtained with the
GenAP46 program developed in this laboratory using an
approach proposed by Carhart et al.45 AP descriptors
are defined by their atom types and topological distance
bins. An AP is a substructure defined by two atom types
and the shortest path separation (or graph distance)
between the atoms. The graph distance is defined as
the smallest number of atoms along the path connecting
two atoms in a molecular structure. The general form

of an atom pair descriptor is as follows:

In our study, the following 15 atom types were used,
selected from SYBYL atom types (mol2 format):41 (1)
negative charge center, NCC; (2) positive charge center,
PCC; (3) hydrogen bond acceptor, HA; (4) hydrogen bond
donor, HD; (5) aromatic ring center, ARC; (6) nitrogen
atoms, N; (7) oxygen atoms, O; (8) sulfur atoms, S; (9)
phosphorus atoms, P; (10) fluorine atoms, FL; (11)
chlorine, bromine, iodine atoms, HAL; (12) carbon

Table 1. Structures and in Vivo Anticonvulsant Activities of 48 FAA Compounds Used in This Study

compd ref R1 R2 R3 MES, mice ip ED50 (mg/kg) log ED50 (µmol/kg)

1 7b,c Ac CH3 CH2Ph 76.5 (66.5-89.0)a 2.54
2 b Ac CH3 (CH2)3Ph 87.6c 2.55
3 7c Ac CH3 CH2-3-F-C6H4 77.3 (62.5-91.0)a 2.51
4 7e Ac 2-furanyl CH2Ph 10.3 (9.1-11.6)c 1.58
5 7e Ac 2-furanyl CH2-2-F-C6H4 40.0c 2.14
6 7e Ac 2-furanyl CH2-3-F-C6H4 13.3 (11.5-15.3)c 1.66
7 7e Ac 2-furanyl CH2-4-F-C6H4 12.7 (10.4-15.1)c 1.64
8 7e Ac 2-furanyl CH2-2,5-di-F-C6H3 23.8 (20.2-28.4)c 1.89
9 7c Ac Ph CH2Ph 20.3 (16.8-24.4)a 2.06

10 d Ac 2-allyl CH2Ph 33.6 (28.4-45.1)c 2.16
11 7g Ac 2-tetrahydrofuranyl CH2Ph 51.7 (44.4-59.9)c 2.27
12 7j Ac CH2OCH3 CH2Ph 8.3 (7.9-9.8)a 1.52
13 7j Ac CH2OC2H5 CH2Ph 17 (15-19)a 1.81
14 7e Ac 2-furanyl-5-CH3 CH2Ph 19.2 (16.4-23.8)c 1.83
15 7e Ac 2-pyrrolyl CH2Ph 16.1 (13.2-19.9)c 1.77
16 7e Ac 2-pyrrolyl-5-CH3 CH2Ph 36.5 (30.6-57.1)c 2.12
17 7e Ac 2-thienyl CH2Ph 44.8 (38.9-51.4)c 2.19
18 7e Ac 3-thienyl CH2Ph 87.8 (69.9-150)c 2.48
19 7g Ac 1-pyrrole CH2Ph 80.2 (66.6-101)c 2.47
20 7g Ac 1-pyrazole CH2Ph 16.5 (14.1-22.5)c 1.78
21 7i Ac 2-pyridyl CH2Ph 10.8 (9.1-12.1)a 1.58
22 7i Ac 2-pyrazinyl CH2Ph 14.8 (12.5-17.2)a 1.72
23 7i Ac 2-pyrimidyl CH2Ph 8.1 (5.5-11.5)a 1.46
24 7g Ac 2-oxazole CH2Ph 10.4 (9.2-11.6)c 1.58
25 7g Ac 2-thiazole CH2Ph 12.1 (9.5-14.5)c 1.62
26 7g Ac C(S)NH2 CH2Ph 86.2 (75.4-101)c 2.51
27 e Ac C(NH)NHOAc CH2Ph 140 (45.7-715)c 2.66
28 e Ac C(NH)NHOH CH2Ph 112 (85.7-151)c 2.63
29 7f Ac NH2 CH2Ph 65.1 (56.2-75.3)c 2.47
30 7f Ac NHCH3 CH2Ph 44.5 (37.0-52.4)c 2.28
31 7f Ac NHC2H5 CH2Ph 42.4 (37.2-47.8)c 2.23
32 7f Ac N(CH3)2 CH2Ph 45.3c 2.26
33 7f Ac NH(OCH3) CH2Ph 6.2 (5.4-7.2)c 1.39
34 7f Ac N(CH3)OCH3 CH2Ph 6.7 (5.7-7.7)c 1.40
35 7f Ac N-isoxazoline CH2Ph 31.4 (26.7-37.8)c 2.05
36 f Ac NPhNH2 CH2Ph 42.8 (34.9-54.3)c 2.14
37 7f Ac NHNHCbz CH2Ph 55.6 (49.3-63.9)c 2.18
38 7f Ac OH CH2Ph 80.1 (70.6-91.0)c 2.56
39 7f Ac OCH3 CH2Ph 98.3 (84.4-114)c 2.62
40 7f Ac OC2H5 CH2Ph 62.0 (51.1-78.4)c 2.39
41 g Ac NH-3-NH2-C6H4 CH2Ph 98.6 (76.8-120)c 2.50
42 g Ac NH-4-NH2-C6H4 CH2Ph ∼176c 2.75
43 7g CH3C(S) 2-furanyl CH2Ph 18.4 (15.9-22.0)c 1.80
44 7c 270c 3.06
45 f 60.1(51.9-68.0)c 2.50
46 8a,b CH3 CH3 CH2Ph 31.2 (21.4-40.8)a 2.21
47 9 53 (46-61)a 2.38
48 8c 29.1 (14.6-41.0)a 2.09

a This compound was evaluated at the NIH Epilepsy Branch (Bethesda, MD) under the direction of Dr. Harvey Kupferberg and Mr.
James P. Stables. b D. W. Robertson, J. D. Leander. Unpublished results. c This compound was evaluated at the Eli Lilly Laboratories
(Indianapolis, IN) under the direction of Drs. J. David Leander and David W. Robertson. d K. N. Sawhney, H. Kohn. Unpublished results.
e P. Bardel, H. Kohn. Unpublished results. f H. Kohn. Unpublished results. g Choi, D. Ph.D. Thesis, University of Houston, Houston, TX,
1995.

atom type i‚‚‚(distance)‚‚‚atom type j
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atoms, C; (13) all other elements, OE; (14) triple bond
center, TBC; (15) double bond center, DBC. The total
number of pairwise combinations of all 15 atom types
is 120. Furthermore, 15 distance bins were defined in
the interval from graph distance zero (i.e., zero atoms
separating an atom pair) to 14 and greater. Thus, a total
of 1800 (120 × 15) AP descriptors were generated for
each molecular structure. Many of the AP descriptors
frequently have zero value (when certain atom types or
atom pairs are absent in molecular structures). Thus,
for our data set of 48 anticonvulsant FAA, only 273
descriptors with nonzero value and nonzero variance
were generated with the GenAP program.

MZ descriptors were range-scaled prior to distance
calculations, since the absolute scales for MZ descriptors
can differ by orders of magnitude. Accordingly, our use
of range scaling avoided giving descriptors with signifi-
cantly higher ranges a disproportional weight upon
distance calculations in multidimensional MZ descriptor
space. No scaling was needed for AP descriptors, since
they are integers ranging from zero to no more than a
couple of dozens of AP counts. All calculations were
performed on an SGI Octane at University of North
Carolina’s Laboratory for Molecular Modeling.

kNN QSAR Method. The kNN QSAR method32

employs the kNN classification principle47 and the
variable selection procedure. Briefly, a subset of nvar
(number of selected variables) descriptors is selected
randomly as a hypothetical descriptor pharmacophore

(HDP). The nvar is set to different values to obtain the
best q2 possible. The HDP is validated by leave-one-out
cross-validation, where each compound is eliminated
from the training set and its biological activity is
predicted as the average activity of k most similar
molecules (k ) 1-5). The similarity is characterized by
the Euclidean distance between compounds in multi-
dimensional descriptor space. A method of simulated
annealing with the Metropolis-like acceptance criteria
is used to optimize the variable selection. Further
details of the kNN method implementation, including
the description of the simulated annealing procedure
used for stochastic sampling of the descriptor space, are
given elsewhere.32

The original kNN method32 was enhanced in this
study by using weighted molecular similarity. In the
original method, the activity of each compound was
predicted as the algebraic average activity of its k-
nearest-neighbor compounds in the training set. How-
ever, in general, the Euclidean distances in the descrip-
tor space between a compound and each of its k nearest
neighbors are not the same. Thus, the neighbor with
the smaller distance from a compound was given a
higher weight in calculating the predicted activity as
follows.

where di is the Euclidean distance between the com-
pound and its k nearest neighbors, wi is the weight for
every individual nearest neighbor, yi is the actual
activity value for nearest neighbor i, and ŷ is the
predicted activity value.

In summary, the kNN QSAR algorithm generates
both an optimum k value and an optimal nvar subset
of descriptors, which afford a QSAR model with the
highest value of q2. Figure 1 shows the overall flowchart
of the current implementation of the kNN method.

SA-PLS Method. The SA-PLS method is based on
the GA-PLS method.34,35 While we employ the same

Table 2. Structures and in Vivo Anticonvulsant Activities for Compounds in the External Set

compd ref R1 R2 R3 R4 MES, mice ip ED50 (mg/kg) log ED50 (µmol/kg)

49 Ac H C2H5 H >100, <300a 2.63-3.12
50 Ac H nC3H7 H 38.4 (34.9-45.0)a 2.19
51 39 Ac CH3 CH3 H >30, <100a 2.10-2.63
52 39 Ac CH3 C2H5 H >30, <100a 2.08-2.60
53 39 Ac C2H5 CH3 H 85.0 (74.3-99.1)a 2.53
54 39 Ac H CH3 CH3 >100, <300a 2.63-3.11
55 39 Ac H CH2OCH3 CH3 >100, <300a 2.58-3.06
56 HC(O) H CH2OCH3 H >30, <100a 2.10-2.63
57 EtC(O) H CH2OCH3 H >100, <300a 2.58-3.06
58 CH2dCHC(O) H CH2OCH3 H >100, <300a 2.58-3.06
59 H H nC3H7 H >30, <100a 2.16-2.69
60 39 H CH3 C2H5 H >30, <100a 2.16-2.69
61 7b H H CH3 H >100, <300a 2.75-3.23

a This compound was evaluated at the NIH Epilepsy Branch (Bethesda, MD) under the direction of Dr. Harvey Kupferberg and Mr.
James P. Stables.

Scheme 2. Preparation of 56-58

wi )
exp(-di)

∑
k nearest neighbors

exp(-di)
(1)

ŷ ) ∑wiyi (2)

2814 Journal of Medicinal Chemistry, 2002, Vol. 45, No. 13 Shen et al.



stochastic descriptor sampling used in the kNN QSAR
method, the QSAR model for HDP is developed using
PLS28,48 analysis. The [1 - (n - 1)(1 - q2)/(n - c)]
expression (where q2 is the cross-validated R2, n is the
number of compounds, and c is the optimal number of
components) is used as a fitting function to guide the
SA optimization.

Robustness of QSAR Models. The q2 values for the
models for experimental training sets were compared
to those derived for so-called random datasets, which
are generated by random shuffling of compound activi-
ties. The statistical significance of QSAR models for
training sets was evaluated with the standard hypoth-
esis testing method.49 In this approach, two alternative
hypotheses are formulated: (1) for H0, h ) µ; (2) for H1,
h > µ, where µ is the average value of q2 for random
datasets and h is the q2 value for the actual dataset.
Thus, the null hypothesis, H0, states that the QSAR
model for the actual dataset is not significantly better
than random models whereas the alternative hypoth-
esis, H1, assumes the opposite (i.e., that the actual model
is significantly better than the random models). The
decision-making is based on a standard one-tail test,
which involves the following procedure.

(1) Determine the average value of q2 (µ) and its
standard deviation (σ) for random datasets.

(2) Calculate the Z score that corresponds to the q2

value for the actual dataset:

(3) Compare this Z score with the tabular critical
values of Zc at different levels of significance (R)49 to
determine the level at which H0 should be rejected. If
the Z score is higher than tabular values of Zc (cf., Table
3), one concludes that at the level of significance that
corresponds to that Zc, H0 should be rejected and,

therefore, H1 should be accepted. In this case, it is
concluded that the result obtained for the actual dataset
is statistically better than those obtained for random
datasets at the given level of significance.

Model Validation: Training and Test Set Com-
pound Selection. A q2 value greater than 0.5 has been
considered to be standard proof of the high predictive
ability of the model. This axiom is not always true. We
have demonstrated36 that while a high q2 is a necessary
condition for a model to have a high predictive power,
it is not a sufficient condition. To obtain a truly
predictive and validated model, it is necessary to split
the whole dataset into training and test sets, to develop
a training set model, and to validate it by accurately
predicting the activity of the test set compounds. To
obtain training and test sets, we have used a diversity
of sampling algorithms described in detail elsewhere.36

This algorithm allows construction of training and test
sets of various sizes that cover the entire descriptor
space of all compounds.

Conservative Activity Prediction for the Test
Set Compounds. In the kNN method, kNN QSAR
models are developed from chemical similarity calcula-
tions by interpolating the activity of the test set
compounds. Potentially, certain molecules from external
test sets could be too dissimilar from the test set
compounds to afford accurate prediction of their activity.
Thus, we have introduced a distance cutoff value Dc that
defines a similarity threshold for external compounds:

where yj is the average Euclidean distance of k nearest
neighbors of each compound in the training set, σ is the
standard deviation of Euclidean distances of k nearest
neighbors for each compound in the training set, and Z
is an empirical parameter to control the significance
level, with a default value of 0.5.

If the distance from an external compound to any of
its nearest neighbors in the training set is above the
distance cutoff Dc, we consider it impossible to evaluate
its activity accurately and exclude this compound from
consideration. Otherwise, the activity of an external
compound is predicted from eqs 1 and 2. In our study,
all compounds in the external data set were found to
be within the default distance cutoff (corresponding to
the Z value of 0.5) of their nearest neighbors in the
training set.

Results and Discussion
kNN and SA-PLS QSAR analyses of 48 anticonvul-

sant agents were performed independently using MZ
and AP descriptors. Four different types of models were
built using various combinations of descriptors and
optimization algorithms: AP_kNN, MZ_kNN, AP_SA-
PLS, and MZ_SA-PLS. The results obtained with these
methods are discussed in terms of the optimized q2

values, variable selection, actual vs predicted activities,
and statistical significance of the resulting QSAR
models.

QSAR Models and Their Robustness. In the kNN
QSAR method, nvar can be set to any value that is less
than the total number of descriptors. Since the optimal
number for nvar is not known a priori, multiple models
have to be generated to examine the relationship

Figure 1. Flowchart of the kNN method.

Table 3. Frequently Used R Values and the Corresponding
Critical Values of Zc for One-Tail Test

R ) 1

σ x2π
e-z2/2 for z g 4

R Zc

0.10 1.28
0.05 1.64
0.01 2.33
0.001 3.10

Z ) (h - µ)/σ (3)

Dc ) yj + Zσ (4)
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between q2 and nvar. As previously discussed, the
robustness of a QSAR model should be established by
comparing results for the actual data set with those for
data sets with randomized activity values. Thus, 10-,
20-, 30-, 40-, and 50-descriptor models were generated.
Figure 2 shows a plot of q2 vs nvar for the actual and
random data sets obtained with AP_kNN calculations
(similar plots, which are not shown, were also generated
as a result of MZ_kNN, AP_SA-PLS, and MZ_SA-PLS
QSAR analyses as well). Every q2 value is the average
of 10 independent computations. Overall, we obtained
consistently higher q2 values for the actual data set
compared to those for randomized activity data sets. The
q2 values for the real data set were in the range 0.60-
0.85 compared to -0.10 to 0.10 for the random data sets.

The statistical examination of the results was per-
formed with one-tail hypothesis testing as described in
Computational Details. The q2 values for 20-descriptor
AP_kNN QSAR models obtained for 10 different ran-
domized data sets are shown in Table 4, which also lists
the average q2 value, the standard deviation of the q2

values, and the Z score for the most significant 20-
descriptor AP_kNN QSAR model for the actual data set.
A Z score of 4.73 indicates that the probability that the
AP_kNN QSAR model constructed for the real FAA data
set is random is approximately 10-5. The similar results
for this statistical significance test were obtained for our
MZ_kNN, AP_SA-PLS, and MZ_SA-PLS QSAR models;
they are provided in Table 4 as well. These findings
document that all QSAR models for the actual data set
were nonspurious.

kNN QSAR Model Validation. To obtain reliable
and truly predictive QSAR models, it is necessary to
demonstrate that the training set models can accurately
predict activities of compounds in external test sets.
Generally, we accept models with q2 values for the
training set greater than 0.5 and R2 values for predicted

vs actual activities of the test set compounds greater
than 0.6.36 Certainly, models of the greatest utility are
those obtained with the smallest possible training set,
which are still capable of accurately predicting the
activities of large test sets. By use of the diversity
selection algorithm referenced in Methods, the entire
48-compound dataset characterized by the AP descrip-
tors was divided into different training and test sets,
with the training and test set sizes being 41 and 7, 40
and 8, 39 and 9, 37 and 11, 35 and 13, and 34 and 14.
Multiple variable selection models with the high q2

values (greater than 0.5) were generated. However, as
in earlier studies,36 no correlation was found between
q2 and R2 (Figure 3). On the basis of our criteria,
acceptable models with both high statistical significance
(q2 > 0.5) and predictive power (R2 > 0.6) represented
only a small fraction of all models with q2 > 0.5 (Figure
3). These results provide further evidence that the use
of the term “predictive” to describe QSAR models with
q2 > 0.5 should be generally avoided.

Table 5 presents the 10 best models obtained from
multiple AP_kNN analyses. The trajectory of the SA-
driven optimization of q2 values in developing the best
AP_kNN QSAR model 1 (Table 5) is shown in Figure 4.
Figure 5 shows actual vs calculated activity values for
the training and test sets based on this model. The
number of descriptors for the 10 best models varied
between 12 and 26. As expected, we found that as the
size of the training set decreased and the size of the
test set correspondingly increased, the predictive power
of the models (R2) decreased as well (cf., Table 5).
Nonetheless, an acceptable model was obtained with the
test set as large as 14 compounds (nearly one-third of
the entire data set) with q2 ) 0.77 and R2 ) 0.64.

Figure 2. Plots of q2 vs the number of descriptors selected
for the best AP_kNN QSAR models for 48 anticonvulsant
R-amino acid derivatives. The results for both actual and
random (with shuffled activity values) data sets are shown.
Every q2 value is the average of 10 independent calculations.
Triangles represent the actual data set, and squares represent
the random data set.

Table 4. Standard One-Tail Hypothesis Testing for a
20-Descriptor QSAR Model for 48 FAA Compounds Using
AP_kNN, MZ_kNN, AP_SA-PLS, and MZ_SA-PLS Methods

QSAR model
h (q2 of

actual model)
µ (av q2 of

10 random models) σ
Z

score

AP_kNN 0.84 0.08 0.16 4.73
MZ_kNN 0.71 0.01 0.15 4.57
AP_SA-PLS 0.66 0.08 0.10 5.92
MZ_SA-PLS 0.71 0.06 0.16 4.21

Figure 3. Predictive R2 vs q2 for AP_kNN models with q2 >
0.6. The models with R2 > 0.6 are indicated by triangles.

Table 5. Ten Best AP_kNN QSAR Models

model
no.

size of the
training set
(no. of cpds)

size of the
test set

(no. of compds)
no. of

descriptors

q2

(training
set)

R2

(test
set)

1 41 7 16 0.79 0.90
2 41 7 26 0.84 0.90
3 41 7 16 0.80 0.88
4 40 8 12 0.82 0.76
5 40 8 14 0.81 0.73
6 40 8 10 0.81 0.69
7 39 9 18 0.81 0.67
8 37 11 10 0.78 0.64
9 35 13 22 0.73 0.65

10 34 14 26 0.77 0.64
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Table 6 presents the 10 best models obtained from
multiple MZ_kNN analyses. Since the training/test set
selection algorithm is sensitive to the type of descriptors
used, the original 48-compound dataset was divided into
different training and test sets from those employed
when AP descriptors were used. Here, the training and
test set sizes were 43 and 5, 39 and 9, and 38 and 10
compounds. Multiple QSAR models were generated
independently for all training sets and validated using
the test sets. The best models with the highest predic-
tive power were obtained for the test sets with five and
nine compounds, with the optimal number of descriptors
ranging between 12 and 20 (Table 6). Figure 6 shows
actual vs calculated activity values for the training and
test sets using this model.

We have attempted to increase the size of the test sets
to include 11 (37 compounds in the training set), 12 (36),
13 (35), and 14 (34) compounds. However, as the number
of compounds in the test set increased above 10, the
predictive ability of the models (R2) decreased dramati-
cally. Indeed, the best R2 values for the test sets with
11, 12, 13, and 14 compounds were only 0.36, 0.13, 0.34,
and 0.22, respectively, whereas q2 values for the respec-

tive training sets were still in the range 0.70-0.80.
These results demonstrate once more that q2 alone does
not serve as an estimate of the predictive power of kNN
models.

SA-PLS Model Validation. The results obtained
with the AP_SA-PLS analysis are summarized in Table
7. The test and training sets were the same as reported
above for the AP_kNN analysis. Multiple QSAR models
with q2 > 0.5 were obtained independently for 10, 20,
30, 40, and 50 descriptors, and the 10 best models were
selected using the R2 value as the criterion (Table 7).
We found that the most predictive models were obtained
with only 7 or 8 compounds in the test set. When the
test sets contained 9, 11, 13, and 14 compounds, high
q2 values were still observed for the respective training
sets; however, the R2 values obtained for these test sets
did not exceed 0.5. These findings again illustrate that
high q2 values for the training sets do not imply an
acceptable QSAR model. The fitted (non-cross-validated)
R2 values are also provided in Table 7. We obtained no
models that gave an acceptable R2 value using MZ
descriptors.

In general, similar to our kNN analysis, the AP_SA-
PLS method appeared to provide models with higher
predictive power than models resulting from MZ_SA-
PLS calculations. The AP_SA-PLS models with the
highest predictive power were produced using training
sets corresponding to the test sets with 7 and 8
compounds. The range of the optimum number of
descriptors varied from 20 to 50 for AP_SA-PLS. As the
number of compounds in the test set further increased,
the predictive ability of the models decreased dramati-
cally. The trajectory of the SA-driven optimization of
q2 values in developing the best model 1 (Table 7) is
shown in Figure 7. Figure 8 shows the actual vs
calculated activity values for the training and test sets
using this AP_SA-PLS model.

The detailed results are listed in the table in Sup-
porting Information, which compares predicted vs actual
biological activity values for each compound in the
training and test sets, as determined by three types of
QSAR models. Models obtained with AP descriptors
appeared to reproduce experimental data better than
those generated with MZ descriptors.

Prediction of Anticonvulsant Activity for an
External Data Set. QSAR models validated with the
test sets were used to predict the anticonvulsant activity
of 13 new compounds (Table 2), which were not available
prior to our QSAR studies of 48 FAA. For the majority
of these compounds (Table 2), the experimental ED50

Figure 4. Trajectory of the SA-driven optimization of q2

values in developing the AP_kNN model 1.

Figure 5. Actual vs calculated activity values for the training
(squares) and test (triangles) set using AP_kNN model 1
(q2 ) 0.79, R2 ) 0.90).

Table 6. Ten Best MZ_kNN QSAR Models

model
no.

size of the
training set

(no. of compds)

size of the
test set (no.
of compds)

no. of
descriptors

q2

(training
set)

R2

(test
set)

1 43 5 12 0.64 0.81
2 43 5 22 0.71 0.77
3 43 5 22 0.77 0.71
4 43 5 20 0.78 0.71
5 43 5 16 0.76 0.71
6 43 5 12 0.75 0.71
7 39 9 20 0.65 0.72
8 39 9 14 0.65 0.72
9 39 9 12 0.69 0.71

10 38 10 18 0.72 0.67

Figure 6. Actual vs calculated activity values for the training
(squares) and test (triangles) set using MZ_kNN model 1
(q2 ) 0.64, R2 ) 0.81).
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values were determined as a range of values (e.g., 100-
300 mg/kg). All of the external compounds displayed
moderate activity that ranged between 2.08 and 3.22
log ED50 units (Table 8), while the original training set
compounds (table in Supporting Information) featured
log ED50 activity values that ranged between 1.39 and

3.06 log ED50 units (smaller log ED50 value means more
active compound).

Previous studies with the external validation of QSAR
models showed that the most reliable results are usually
obtained by averaging predictions from multiple QSAR
models. Table 8 lists the averaged predicted activity
values for the external data set obtained from the 10
best AP_kNN, MZ_kNN, and AP_SA-PLS models. Since
the experimental ED50 values were determined as a
range of values, we discuss the accuracy of prediction
using our models in qualitative terms.

Analysis of the data reported in Table 8 suggests that
all three models afforded reasonable results. The activi-
ties predicted with the AP_kNN method fell within the
observed range of activities for compounds 51, 52, 54-
57, 59, and 60 and close to the lowest boundary of
activity predicted for compound 58. Furthermore,
AP_kNN models predicted the activity for compounds
50 and 53, with an absolute value of residuals less than
0.20. Both MZ_kNN and AP_SA-PLS models performed
slightly worse with respect to the same compounds, a
result that mirrored the findings for the original 48
FAA. The activities for the least active compounds 49
and 61 were somewhat better predicted with the
SA-PLS method compared to the kNN method. This
result may be due to the difference in the two QSAR
approaches in terms of their predictive ability. The kNN
method determines the activity of an external compound
by interpolating the activity of selected compounds from
the training set. Accordingly, the predicted activity
always lies within the range of activities for the training
set. Alternatively, SA-PLS is a linear optimization
approach that permits extrapolation of the predicted
activity outside the training set values. These consid-
erations may explain why the SA-PLS method was able
to predict the activity of compounds 49 and 61 (the
log ED50 value for the latter compound is actually higher
than for any compound in the original dataset). In
summary, results for the external datasets paralleled
those obtained in model building and validation using
internal training and test sets, with the AP_kNN
method being the most successful. This observation
emphasizes that QSAR models should be validated
internally to choose the most successful method before
embarking on the prediction of an external data set.

It was interesting to analyze the performance of
QSAR models with respect to distinctive chemical
modifications implied in the design of the external set
compounds. The FAA compounds can be divided into
three substructures: the N-terminus, the central amino
acid with the C(2) substituent, and the C-terminus.

Table 7. Ten Best AP_SA-PLS QSAR Models

model
no.

size of the
training set

(no. of compds)

size of the
test set

(no. of compds)
no. of

descriptors
q2

(training set)
fitted R2

(training set)
R2

(test set)

1 41 7 20 0.66 0.89 0.77
2 41 7 40 0.71 0.91 0.64
3 41 7 50 0.68 0.94 0.73
4 41 7 50 0.55 0.91 0.73
5 40 8 20 0.64 0.86 0.64
6 40 8 30 0.68 0.89 0.67
7 40 8 40 0.62 0.92 0.65
8 40 8 40 0.69 0.91 0.65
9 40 8 50 0.64 0.92 0.63

10 40 8 50 0.55 0.91 0.63

Figure 7. Trajectory of the SA-driven optimization of q2

values in developing the AP_SA-PLS model 1.

Figure 8. Actual vs calculated activity values for the training
(squares) and test (triangles) sets using AP_SA-PLS model 1
(q2 ) 0.66, R2 ) 0.77).

Table 8. Comparison of Actual and Predicted Activities
(log ED50)a for the External Test Set Compounds

compd actual activity
AP_kNN
predicted

MZ_kNN
predicted

AP_SA-PLS
predicted

49 2.63-3.12 2.33 2.37 2.41
50 2.19 2.33 2.37 2.41
51 2.10-2.63 2.33 2.06 2.32
52 2.08-2.60 2.48 2.02 2.16
53 2.53 2.38 2.03 2.16
54 2.63-3.11 2.84 2.60 2.67
55 2.58-3.06 2.83 2.76 2.68
56 2.10-2.63 2.40 2.42 2.68
57 2.58-3.06 2.52 2.81 2.57
58 2.58-3.06 2.52 2.19 2.36
59 2.16-2.69 2.32 2.42 2.75
60 2.16-2.69 2.32 2.33 2.08
61 2.75-3.23 2.24 2.39 3.16
a ED50 values are given in µmol/kg units.
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Inspection of the external data set showed that the
QSAR models successfully predicted trends in the
activity change resulting from modifications within two
structural FAA substructures. In compounds 56-58, the
acetyl moiety (N-terminus) in 12 was either decreased
in size (56) or increased (57, 58). We observed that
either change led to a loss in biological activity, a result
in agreement with the QSAR models (Table 8). Simi-
larly, we tested whether nitrogen alkylation (N- and
C-termini) affected anticonvulsant activity. Our QSAR
models (Table 8) predicted that N(1) alkylation (N-
terminus) (R2 ) alkyl) would not appreciably alter drug
activity for those compounds with or without an N(1)
acetyl unit (51-53, 60) while N(2) alkylation (C-
terminus) (R4 ) alkyl) would adversely affect anticon-
vulsant activity (54, 55). These results mirrored those
obtained in the MES-seizure assay (Table 2). Less
satisfactory results were obtained for compounds con-
taining C(2)-alkyl substitutions (R3). The QSAR models
predicted moderate activities for 49 and 50 (Table 8).
We observed moderate activity for 49 in the MES
seizure test but excellent activity for 50 (ED50 ) 38.4
mg/kg), showing that a substituted hereroatom one
atom removed from the chiral FAA carbon was not
essential for anticonvulsant activity.

Visualization of the QSAR Results. At the outset,
we discussed advantages (such as speed and automa-
tion) of 2D QSAR methods compared with 3D QSAR
approaches. However, QSAR models developed with 2D
descriptors generally lack the ability of 3D QSAR based
models (such as CoMFA) to visualize the results of
modeling with respect to underlying chemical structures
(cf., the graphical 3D contours typically obtained with
CoMFA). This insufficiency is largely due to the differ-
ent nature of descriptors used in 2D QSAR studies.
Molecular field descriptors used in 3D QSAR modeling
are derived directly from 3D representation of chemical
structures and consequently are easy to visualize.
Uncovering chemical structural features that give rise
to particular values of molecular topological descriptors
used in our studies (i.e., descriptors calculated for the
entire molecular structure as opposed to atom-based
descriptors such as atom E-state indices50) is practically
impossible. However, we can indeed uncover substruc-
tures, which are essential with respect to underlying
biological activity, using AP descriptors. Unlike molec-
ular topological indices, AP descriptors represent counts
of specific molecular features, or chemical subgraphs,
found in different molecules. Therefore, it should be
feasible to map specific AP descriptors selected by a
successful variable selection AP-kNN model onto un-
derlying chemical structures and then to analyze these
AP features in terms of their relative contribution to a
compound’s activity.

An example of such an analysis is shown in Figure 9
for descriptors implicated in the best AP_kNN model 1
(Table 5). This model is based on 16 selected AP
descriptors, which afforded both high internal (q2 )
0.79) and external (R2 ) 0.90) accuracy. These descrip-
tors represent absolute counts of 16 specific types of
atom pairs that occur in molecules with different
anticonvulsant activities. The descriptors can be ana-
lyzed in terms of the number of times they are present
in the more active vs the less active molecules, and those

descriptors that occur with the highest frequency in the
most active molecules can then be visualized. Several
of these AP descriptors are shown in Figure 9 for the
most active compound 33 compared to the least active
compound 44. For instance, the O-C_03 atom pair
(oxygen and sp3 carbon atoms separated by the chemical
graph path of length 3) is found in the most active
compound 33 but not in 44. Similarly, the N-N_03 atom
pair occurs in compound 33 but not in 44. These
observations suggest that increasing the number of
these molecular features may potentially improve a
given compound’s activity. The example provides an
illustration of how 2D QSAR results can be visualized
and even used to design new potentially active com-
pounds.

Conclusions and Future Studies

In this study, we have developed and thoroughly
validated QSAR models for a series of FAA anticonvul-
sants. In agreement with our earlier observations, we
have demonstrated that the high value of leave-one-out
cross-validated R2 (q2) obtained for the training set does
not ensure the predictive power of the QSAR model. We
showed that the AP_kNN approach was particularly
successful in generating models with high internal and
external accuracy. These models can be further ex-
ploited for the design and discovery of new, potent
anticonvulsant agents.

Database mining is an obvious future application of
our QSAR models. We plan to search available chemical
databases (such as the National Cancer Institute da-
tabase NCISMA9951) for compounds with high predicted
anticonvulsant activity. In addition, we will extend our
analysis of AP features selected by the kNN method to
aid in the design of new FAA anticonvulsants. The
approaches employed in this paper can be adopted for
other anticonvulsants as well as for QSAR studies of
other datasets.

Figure 9. Visualization of important AP descriptors. The most
active compound 33 features two atom pairs, O-C_03 (top
panel, oxygen atom separated from carbon atom by a graph
path with the length of 3) and N-N_03 (bottom panel, two
nitrogen atoms separated by a path of 3), which are absent in
the least active compound 44.
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Experimental Section

General Methods. Melting points were determined in open
capillary tubes using a Thomas-Hoover melting point ap-
paratus and are uncorrected. Infrared spectra (IR) were run
on an ATI Mattson Genesis FTIR spectrometer. Absorption
values are expressed in wavenumbers (cm-1). Nuclear mag-
netic resonance spectra were measured at 300 MHz for 1H
NMR and at 75 MHz for 13C NMR on either General Electric
QE-300 NMR or Varian Gemini 2000 spectrometers. Chemical
shifts (δ) are reported in parts per million (ppm) downfield
from tetramethylsilane. Low-resolution mass spectra (CI+)
were obtained with a Varian MAT CH-5 spectrometer by Dr.
M. Moini at the University of TexassAustin. The high-
resolution chemical ionization mass spectra were obtained
from a Finnigan MAT TSQ-70 by Dr. M. Moini at the
University of TexassAustin. Microanalyses were provided by
Atlantic Microlab, Inc. (Norcross, GA). Analytical thin-layer
chromatography (TLC) was performed on precoated silica gel
GHLF microscope slides (2.5 cm × 10 cm; Analtech no. 21521).
All column chromatography separations were performed on
Merck silica gel (SiO2) (grade 9385, 230-400 mesh, 60 Å).
Yields reported are for purified products and were not opti-
mized.

Chemical Synthesis. General Procedure for the Prepa-
ration N′-Benzylamide Amino Acid Derivatives Using
the Mixed Anhydride Coupling (MAC) Method (Method
A).7j,38 A dry THF solution of carboxylic acid (0.5-2.0 M) was
cooled to -78 °C under Ar, and 4-methylmorpholine (1.1-1.25
equiv) was added. After the mixture was stirred (2 min),
isobutyl chloroformate (1.1-1.25 equiv) was added, leading to
the precipitation of a white solid. The reaction was allowed to
proceed for an additional 2 min, and then benzylamine (1.1-
1.25 equiv) was added at -78 °C. The reaction mixture was
allowed to stir at room temperature (30 min to 3 h), and then
the insoluble salts were filtered. The organic layer was
concentrated in vacuo, and the product was purified by column
chromatography on SiO2 gel.

(R,S)-N-Benzyl-2-acetamidobutanamide (49). Utilizing
method A and using 62 (3.50 g, 24.1 mmol), THF (50 mL),
4-methylmorpholine (3.2 mL, 29.0 mmol), isobutyl chlorofor-
mate (3.8 mL, 29.0 mmol), and benzylamine (3.8 mL, 29.0
mmol) gave crude 49. The product was purified by column
chromatography (SiO2; 3:1 hexanes/EtOAc) to obtain 4.12 g
(90%) of pure 49 as a white solid: mp 133-134 °C; Rf 0.57
(1:9 MeOH/CHCl3); IR (KBr) 3288, 3062, 2962, 2931, 1633,
1541, 1297 cm-1; 1H NMR (CDCl3) δ 0.89 (t, J ) 7.5 Hz,
CH2CH3), 1.58-1.67 (m, CHH′CH3), 1.73-1.87 (m, CHH′CH3),
1.88 (s, CH3C(O)), 4.28 (dd, J ) 5.4, 14.9 Hz, CHH′Ph), 4.40
(dd, J ) 5.9, 14.9 Hz, CHH′Ph), 4.54 (br app q, J ) 7.5 Hz,
CH), 7.20-7.33 (m, 5 PhH and NH), 7.84-7.88 (m, NHCH2);
13C NMR (CDCl3) δ 10.2 (CH2CH3), 22.9 (CH3C(O)), 26.1 (CH2-
CH3), 43.4 (CH2Ph), 54.5 (CH), 127.3 (C4′), 127.7 (2C2′ or 2C3′),
128.6 (2C2′ or 2C3′), 138.2 (C1′), 170.6 (CH3C(O) or CHC(O)),
172.3 (CH3C(O) or CHC(O)) ppm; MS (+CI) (rel intensity) 236
(18), 235 (M+ + 1, 100); Mr (+CI) 235.143 77 [M+ + 1] (calcd
for C13H19N2O2 235.144 65). Anal. (C13H18N2O2) C, H, N.

(R,S)-N-Benzyl-2-N-(benzyloxycarbonyl)-2-aminopen-
tanamide (64). Utilizing method A and using a 1:1 mixture
of D-63 (1.76 g, 7.02 mmol (Novabiochem)) and L-63 (1.76 g,
7.02 mmol (Novabiochem)), 4-methylmorpholine (1.9 mL, 17.6
mmol), isobutyl chloroformate (2.3 mL, 17.6 mmol), and
benzylamine (1.9 mL, 17.6 mmol) gave crude 64. The product
was purified by column chromatography (SiO2; 1:1 EtOAc/
hexanes) to obtain 4.37 g (91%) of pure 64 as a white solid:
mp 138-139 °C; Rf 0.49 (1:1 EtOAc/hexanes); IR (KBr) 3296,
2958, 2930, 1688, 1641, 1537, 1464, 1256, 1229, 1056 cm-1;
1H NMR (CDCl3) δ 0.93 (t, J ) 7.8 Hz, CH2CH3), 1.38 (app
sext, J ) 7.8 Hz, CH2CH3), 1.58-1.66 (m, CHCHH′), 1.82-
1.87 (m, CHCHH′), 4.14 (app q, J ) 7.4 Hz, CH), 4.44 (d, J )
5.5 Hz, CH2Ph), 5.10 (s, OCH2Ph), 5.19-5.22 (m, NH), 6.20-
6.23 (m, NH), 7.23-7.34 (m, 10 PhH); 13C NMR (CDCl3) δ 13.7
(CH3), 18.8 (CH2CH3), 34.8 (CHCH2), 43.6 (CH2Ph), 55.1

(CH), 67.1 (OCH2Ph), 127.6, 127.7, 128.1, 128.3, 128.6, 128.8,
136.2, 137.9 (2 C6H5), 156.2 (NC(O)O), 171.7 (CHC(O)) ppm;
MS (+CI) (rel intensity) 342 (21), 341 (M+ + 1, 100), 233 (29);
Mr (+CI) 341.186 51 [M+ + 1] (calcd for C20H25N2O3 341.186 52).
Anal. (C20H24N2O3) C, H, N.

(R,S)-N-Benzyl-2-aminopentanamide (59). A methanolic
solution (75 mL) of 64 (4.30 g, 12.6 mmol) was hydrogenated
(1 atm) in the presence of 5% Pd-C (∼300 mg) at room
temperature (4 h). The mixture was filtered over a bed of Celite
(521), and the clear filtrate was evaporated in vacuo to yield
59 (2.68 g, 99%) as a clear oil: Rf 0.39 (1:19 MeOH/CHCl3);
IR (neat) 3299 (br), 3066, 2954, 2872, 1654, 1531, 1455, 1252
cm-1; 1H NMR (CDCl3) δ 0.93 (t, J ) 7.2 Hz, CH2CH3), 1.32-
1.55 (m, CH2CH3, NH2, and CHCHH′), 1.77-1.88 (m, CHCHH′),
3.37 (dd, J ) 4.4, 8.0 Hz, CH), 4.41 (d, J ) 6.3 Hz, CH2Ph),
7.23-7.34 (m, 5 PhH), 7.62-7.75 (br s, NH); 13C NMR (CDCl3)
δ 13.9 (CH3), 19.1 (CH2CH3), 37.3 (CHCH2), 43.1 (CH2Ph), 55.1
(CH), 127.3 (C4′), 127.7 (2C2′ or 2C3′), 128.6 (2C2′ or 2C3′), 138.7
(C1′), 175.3 (C(O)NH) ppm, the 13C NMR assignments were in
agreement with the DEPT experiment; MS (+CI) (rel intensity)
208 (16), 207 (M+ + 1, 100); Mr (+CI) 207.149 60 [M+ + 1]
(calcd for C12H19N2O 207.149 74). Anal. (C12H18N2O‚0.25H2O)
C, H, N.

General Procedure for the Preparation of N-Acyl-
Substituted Amino Acid Derivatives (Method B). To a dry
THF solution of amine (∼0.1-1 M) were successively added
TEA (1-1.2 equiv) and the acyl chloride or the acid anhydride
(1-2 equiv). The reaction mixture was stirred at room tem-
perature (5-60 min for acyl chlorides, 1 h to 1 day for acid
anhydrides). The organic layer was concentrated in vacuo, and
the product was purified by column chromatography on SiO2

gel.
(R,S)-N-Benzyl-2-acetamidopentanamide (50). Utilizing

method B and using 59 (1.42 g, 6.89 mmol), THF (70 mL), TEA
(2.0 mL, 1.4 mmol), Ac2O (2.0 mL, 21.4 mmol), and a catalytic
amount of DMAP (∼100 mg) gave crude 50 (room temperature,
14 h). The product was purified by column chromatography
(SiO2; 1:19 MeOH/CHCl3) to obtain 1.50 g (88%) of pure 50 as
a white solid: mp 138-139 °C; Rf 0.62 (1:19 MeOH/CHCl3);
IR (KBr) 3284, 3072, 2957, 1637, 1546, 1438, 1383, 1275 cm-1;
1H NMR (CDCl3) δ 0.88 (t, J ) 7.2 Hz, CH2CH3), 1.26-1.38
(m,CH2CH3),1.52-1.64(m,CHCHH′),1.69-1.83(m,CHCHH′),
1.91 (s, CH3C(O)), 4.31 (dd, J ) 5.5, 14.9 Hz, CHH′Ph), 4.40
(dd, J ) 5.9, 14.9 Hz, CHH′Ph), 4.48-4.56 (m, CH), 6.79 (d, J
) 8.4 Hz, NHCH), 7.21-7.34 (m, 5 PhH and NHCH2); 13C
NMR (CDCl3) 14.0 (CH3), 19.0 (CH2CH3), 23.1 (CH3C(O)), 35.0
(CHCH2), 43.6 (CH2Ph), 53.2 (CH), 127.6 (C4′), 127.8 (2C2′ or
2C3′), 128.8 (2C2′ or 2C3′), 138.2 (C1′), 170.5 (CH3C(O) or
CHC(O)), 172.3 (CH3C(O) or CHC(O)) ppm, the 13C NMR
assignments were in agreement with the HETCOR experi-
ment; MS (+CI) (rel intensity) 250 (14), 249 (M+ + 1, 100),
108 (45); Mr (+CI) 249.159 32 [M+ + 1] (calcd for C14H21N2O2

249.160 30). Anal. (C14H20N2O2) C, H, N.
(R,S)-N-Benzyl-2-propionamido-3-methoxypropiona-

mide (57). Compound 57 was prepared utilizing method B
and using 6539 (2.01 g, 9.6 mmol), THF (100 mL), TEA (0.92
mL, 10.6 mmol), and propionyl chloride (1.50 mL, 10.6 mmol).
The reaction mixture was stirred at room temperature (10
min), and then the precipitated salts were filtered and the
organic layer was concentrated in vacuo. The residue was
purified by column chromatography (SiO2; 1:33 MeOH/CHCl3)
to give 1.80 g (71%) of 57 as a white solid: mp 119-120 °C; Rf

0.63 (1:9 MeOH/CHCl3); IR (KBr) 3289, 3067, 2927, 2883, 1637,
1547, 1455, 1226, 1129 cm-1; 1H NMR (CDCl3) δ 1.12 (t, J )
7.6 Hz, CH2CH3), 2.24 (q, J ) 7.6 Hz, CH2CH3), 3.35 (s, OCH3),
3.45 (dd, J ) 7.1, 9.2 Hz, CHH′OCH3), 3.76 (dd, J ) 4.4, 9.2
Hz, CHH′OCH3), 4.41 (dd, J ) 5.7, 15.0 Hz, CHH′NH), 4.48
(dd, J ) 5.7, 15.0 Hz, CHH′NH), 4.58-4.64 (m, CH), 6.58 (d,
J ) 6.9 Hz, NHCH), 7.02-7.06 (br s, NHCH2), 7.23-7.34 (m,
5 PhH); 1H NMR (DMSO-d6) δ 0.98 (t, J ) 7.5 Hz, CH2CH3),
2.17 (q, J ) 7.5 Hz, CH2CH3), 3.25 (s, OCH3), 3.45-3.55 (m,
CH2OCH3), 4.29 (d, J ) 6.0 Hz, CH2NH), 4.47-4.53 (m, CH),
7.20-7.33 (m, 5 PhH), 7.94 (d, J ) 8.1 Hz, NHCH), 8.42 (t, J
) 6.0 Hz, NHCH2), the assignments were in agreement with
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the 1H-1H COSY experiment; 13C NMR (CDCl3) δ 9.8 (CH2CH3),
29.6 (CH2CH3), 43.6 (CH2Ph), 52.4 (CH), 59.2 (OCH3), 72.0
(CH2OCH3), 127.6 (C4′ and 2C2′ or 2C3′), 128.8 (2C2′ or 2C3′),
138.1 (C1′), 170.3 (CH2C(O) or CHC(O)), 174.2 (CH2C(O) or
CHC(O)) ppm; MS (+CI) (rel intensity) 266 (14), 265 (M+ + 1,
100); Mr (+CI) 265.155 45 [M+ + 1] (calcd for C14H21N2O3

265.155 22). Anal. (C14H20N2O3) C, H, N.
(R,S)-N-Benzyl-2-formylamino-3-methoxypropiona-

mide (56). N-(Diethylcarbamoyl)-N-methoxyformamide (TCI
America) (1.27 g, 7.3 mmol) and a catalytic amount of DMAP
(∼100 mg) were added to a THF (65 mL) solution of 6539 (1.38
g, 6.6 mmol) and TEA (925 µL, 6.6 mmol), and the reaction
solution was stirred at 40 °C (6 h). The solvent was evaporated
in vacuo, and the residue was purified by column chromatog-
raphy (SiO2; 1:33 MeOH/CHCl3). The isolated pale-yellow solid
was recrystallized from EtOH to give 1.45 g (93%) of 56 as a
white solid: mp 119-120 °C; Rf 0.45 (1:9, MeOH/CHCl3); IR
(KBr) 3286, 3101, 3039, 2885, 1635 (br), 1558, 1450, 1389,
1219, 1126 cm-1; 1H NMR (CDCl3) δ 3.39 (s, OCH3), 3.46 (dd,
J ) 8.1, 8.8 Hz, CHH′OCH3), 3.85 (dd, J ) 4.1, 8.8 Hz,
CHH′OCH3), 4.45 (dd, J ) 5.4, 14.9 Hz, CHH′NH), 4.51 (dd,
J ) 6.2, 14.9 Hz, CHH′NH), 4.59-4.65 (m, CH), 6.58-6.61
(m, NHCH), 6.71-6.75 (br s, NHCH2), 7.24-7.36 (m, 5 PhH),
8.24 (s, HC(O)); 13C NMR (CDCl3) δ 43.9 (CH2Ph), 51.4 (CH),
59.4 (OCH3), 71.7 (CH2OCH3), 127.7 (C4′), 127.9 (2C2′ or 2C3′),
129.0 (2C2′ or 2C3′), 138.0 (C1′), 161.2 (HC(O)), 169.6 (C(O)-
NH) ppm; MS (+CI) (rel intensity) 238 (12), 237 (M+ + 1, 100),
209 (14); Mr (+CI) 237.124 19 [M+ + 1] (calcd for C12H17N2O3

237.123 92). Anal. (C12H16N2O3) C, H, N.
(R,S)-N-Benzyl-2-acryloylamino-3-methoxypropiona-

mide (58). Utilizing method B and using a THF solution (130
mL) of 6539 (1.80 g, 8.65 mmol), TEA (1.45 mL, 10.4 mmol),
and acryloyl chloride (844 µL, 10.4 mmol) gave a reaction
mixture that was stirred at 0 °C (1 h). The precipitated salts
were filtered, and the organic layer was concentrated in vacuo
to provide a pale-yellow residue. The product was purified by
column chromatography (SiO2; 1:19 MeOH/CHCl3) and then
triturated with hot Et2O to give 1.88 g (83%) of pure 58 as a
white solid: mp 138-139 °C; Rf 0.63 (1:19 MeOH/CHCl3); IR
(KBr) 3294, 3032, 2931, 1736, 1651, 1543, 1365, 1219, 1126
cm-1; 1H NMR (CDCl3) δ 3.36 (s, OCH3), 3.50 (dd, J ) 7.1, 9.2
Hz, CHH′OCH3), 3.81 (dd, J ) 4.1, 9.2 Hz, CHH′OCH3), 4.41
(dd, J ) 5.8, 15.1 Hz, CHH′Ph), 4.49 (dd, J ) 6.0, 15.1 Hz,
CHH′Ph), 4.67-4.73 (m, CH), 5.65 (dd, J ) 1.8, 9.9 Hz, CHH′d
CH), 6.16 (dd, J ) 9.9, 16.8 Hz, CHH′dCH), 6.28 (dd, J ) 1.8,
16.8 Hz, CHH′dCH), 6.85 (d, J ) 7.2 Hz, NHCH), 7.05-7.10
(m, NHCH2), 7.26-7.33 (m, 5 PhH); 13C NMR (CDCl3) δ 43.7
(CH2NH), 52.7 (CH), 59.2 (OCH3), 72.0 (CH2OCH3), 127.5
(CHdCH2), 127.6, 128.8 (C4′, 2C2′, and 2C3′), 131.4 (CHdCH2),
138.0 (C1′), 165.7 (C(O)CHdCH2), 170.1 (C(O)CH) ppm, the
13C NMR assignments were in agreement with the DEPT
experiment; MS (+CI) (rel intensity) 264 (17), 263 (M+ + 1,
100); Mr (+CI) 263.139 88 [M+ + 1] (calcd for C14H19N2O3

263.139 57). Anal. (C14H18N2O3‚0.2H2O) C, H, N.
Pharmacology. New compounds were screened under the

auspices of the National Institutes of Health’s Anticonvulsant
Screening Project. Experiments were performed with male
albino Carworth Farms no. 1 mice (intraperitoneal route, ip).
The mice weighed between 18 and 25 g. All animals had free
access to feed and water except during the actual testing
period. Housing, handling, and feeding were all in accordance
with recommendations contained in the “Guide for the Care
and Use of Laboratory Animals”. All of the test compounds
were administrated in suspensions of 0.5% (w/v) methyl-
cellulose in water. The volumes administered were 0.01 mL/g
of body weight. Anticonvulsant activity was established using
the maximal electroshock (MES) test.52 For the MES test, a
drop of electrolyte solution with an anesthetic (0.5% butacaine
hemisulfate in 0.9% sodium chloride) was placed in the eyes
of the animals prior to positioning the corneal electrodes and
delivery of a nonlethal current. A 60-cycle alternating current
was administered for 0.2 s, utilizing 50 mA. Protection end
points were defined as the abolition of the hind limb tonic
extensor component of the induced seizure.53 In the mouse

identification screens, all compounds were administered at
three dose levels (30, 100, 300 mg/kg) and two time periods
(0.5 and 4 h). Typically, in the MES seizure test, one animal
was used at 30 and 300 mg/kg and three animals were used
at 100 mg/kg. The quantitative determination of the median
effective (ED50) dose was conducted at a previously calculated
time of peak effect using the ip route in mice. Groups of at
least eight animals were tested using different doses of test
compound until at least two points were determined between
100% and 0% protection and minimal motor impairment. The
dose of the candidate substance required to produce the desired
end point (abolition of hindlimb tonic extensor component) in
50% of the animals in each test and the 95% confidence
interval were calculated by a computer program based on
methods described by Finney.54

Acknowledgment. The authors thank Mr. J. P.
Stables and Dr. H. J. Kupferberg, and the Anticonvul-
sant Screening Project (ASP) at the National Institutes
of Health, for kindly performing the pharmacological
studies via the ASP’s contract site at the University of
Utah with Drs. H. Wolf, S. White, and K. Wilcox. This
research was supported in part by NIH Research Grant
MH60328 awarded to Dr. A. Tropsha. Additional funds
for this project were provided, in part, by the University
of North Carolina at Chapel Hill. The authors also
acknowledge Tripos, Inc. for the software grant.

Supporting Information Available: Table showing the
predicted vs actual biological activity values for each compound
in the training and test sets, as determined by all three types
of QSAR models. This material is available free of charge via
the Internet at http://pubs.acs.org.

References
(1) Evans, J. H. Post-traumatic epilepsy. Neurology 1962, 12, 665-

674.
(2) Lindsay, J. M. Genetics and epilepsy. Epilepsia 1971, 12, 47-

54.
(3) Rogawski, M. A.; Porter, R. J. Antiepileptic drugs: pharmaco-

logical mechanisms and clinical efficacy with consideration of
promising developmental stage compounds. Pharmacol. Rev.
1997, 42, 223-286.

(4) Brodie, M. J.; Dichter, M. A. Antiepileptic drugs. N. Engl. J.
Med. 1996, 334, 168-175.

(5) Dichter, M. A.; Brodie, M. J. New Antiepileptic drugs. N. Engl.
J. Med. 1996, 34, 1583-1590.

(6) Mattson, R. H.; Cramer, J. A.; Collins, J. F.; Smith, D. B.
Comparison of carbamazepine, phenobarbital, phenytoin, and
primidone in partial and secondary generalized tonic-clonic
seizures. N. Engl. J. Med. 1985, 313, 145-151.

(7) (a) Kohn, H.; Conley, J. D. New antiepileptic agents. Chem. Br.
1988, 24, 231-233. (b) Cortes, S.; Liao, Z.-K.; Watson, D.; Kohn,
H. Effect of structural modification of the hydantoin ring on
anticonvulsant activity. J. Med. Chem. 1985, 28, 601-606. (c)
Conley, J. D.; Kohn, H. Functionalized DL-amino acid derivatives.
Potent new agents for the treatment of epilepsy. J. Med. Chem.
1987, 30, 567-574. (d) Kohn, H.; Conley, J. D.; Leander, J. D.
Marked stereospecificity in a new class of anticonvulsants. Brain
Res. 1988, 457, 371-375. (e) Kohn, H.; Sawhney, K. N.; LeGall,
P.; Conley, J. D.; Robertson, D. W.; Leander, J. D. Preparation
and anticonvulsant activity of a series of functionalized R-aro-
matic and R-heteroaromatic amino acids. J. Med. Chem. 1990,
33, 919-926. (f) Kohn, H.; Sawhney, K. N.; LeGall, P.; Robertson,
D. W.; Leander, J. D. Preparation and anticonvulsant activity
of a series of functionalized R-heteroaromatic-substituted amino
acids. J. Med. Chem. 1991, 34, 2444-2452. (g) Kohn, H.;
Sawhney, K. H.; Bardel, P.; Robertson, D. W.; Leander, J. D.
Synthesis and anticonvulsant activities of R-heteroaromatic-R-
acetamido-N-benzylacetamide derivatives. J. Med. Chem. 1993,
36, 3350-3360. (h) Kohn, H.; Sawhney, K. N.; Robertson, D. W.;
Leander, J. D. Anticonvulsant properties of N-substituted R,R-
diamino acid derivatives. J. Pharm. Soc. 1994, 83, 689-691. (i)
Bardel, P.; Bolanos, A.; Kohn, H. Synthesis and anticonvulsant
activities of R-acetamido-N-benzylacetamide derivatives contain-
ing an electron-deficient R-heteroaromatic substituent. J. Med.
Chem. 1994, 37, 4567-4571. (j) Choi, D.; Stables, J. P.; Kohn,
H. Synthesis and anticonvulsant activities of N-benzyl-2-aceta-
midopropionamide derivatives. J. Med. Chem. 1996, 39, 1907-
1916.

Analysis of Anticonvulsant Agents Journal of Medicinal Chemistry, 2002, Vol. 45, No. 13 2821



(8) (a) Paruszewski, R.; Rostafinska-Suchar, G.; Strupinska, M.;
Jaworski, P.; Stables, J. P. Synthesis and anticonvulsant activity
of some amino acid derivatives. Pharmazie 1996, 3, 145-148.
(b) Paruszewski, R.; Rostafinska-Suchar, G.; Strupinska, M.;
Jaworski, P.; Winiecka, I.; Stables, J. P. Synthesis and anticon-
vulsant activity of some amino acid derivatives. Pharmazie 1996,
51, 212-215. (c) Paruszewski, R.; Rostafinska-Suchar, G.;
Strupinska, M.; Winiecka, I.; Stables, J. P. Synthesis and
anticonvulsant activity of some amino acid derivatives. Phar-
mazie 2000, 55, 27-30.

(9) Ho, B.; Venkatarangan, P. M.; Cruse, S. F.; Hinko, C. N.;
Andersen, P. H.; Crider, A. M.; Adloo, A. A.; Roane, D. S.;
Stables, J. P. Synthesis of 2-piperidinecarboxylic acid derivatives
as potential anticonvulsants. Eur. J. Med. Chem. 1998, 33, 23-
31.

(10) Stables, J. P.; Kupferberg, H. J. In Molecular and Cellular
Targets for Antiepileptic Drugs; Avanzini, G., Tanganelli, P.,
Avoli, M., Eds.; John Libbey: London, 1997, pp 191-198.

(11) Swinyard, E. A.; Woodhead, J. H.; White, H. S.; Franklin, M. R.
In Antiepileptic Drugs, 3rd ed.; Levy, R. H., Driefuss, F. E.,
Mattson, R. H., Meldrum, B. S., Perry, J. K., Eds.; Raven Press:
New York, 1989; pp 85-102.

(12) Levy, R. H.; Mattson, R.; Meldrum, B. Antiepileptic Drugs, 4th
ed.; Raven Press: New York, 1995; Chapter 6.

(13) Netzeva, T.; Doytchinova, I.; Natcheva, R. 2D and 3D QSAR
analysis of some valproic acid metabolites and analogues as
anticonvulsant agents. Pharm. Res. 2000, 17, 727-732.

(14) Trapani, G.; Latrofa, A.; Franco, M.; Altomare, C.; Sanna, E.;
Usala, M.; Biggio, G.; Liso, G. Propofol analogues. Synthesis,
relationships between structure and affinity at GABAA receptor
in rat brain, and differential electrophysiological profile at
recombinant human GABAA receptors. J. Med. Chem. 1998, 41,
1846-1854.

(15) Hays, S. J.; Rice, M. J.; Ortwine, D. F.; Johnson, G.; Schwarz,
R. D.; Boyd, D. K.; Copeland, L. F.; Vartanian, M. G.; Boxer, P.
A. Substituted 2-benzothiazolamines as sodium flux inhibitors:
Quantitative structure-activity relationships and anticonvul-
sant activity. J. Pharm. Sci. 1994, 83, 1425-1432.

(16) Bikker, J. A.; Kubanek, J.; Weaver, D. F. Quantum pharmaco-
logic studies applicable to the design of anticonvulsants: Theo-
retical conformational analysis and structure-activity studies
of barbiturates. Epilepsia 1994, 35, 411-425.

(17) (a) Lopez-Rodriguez, M. L.; Rosado, M. L.; Benhamu, B.; Morcillo,
M. J.; Fernandez, E.; Schaper, K. J. Synthesis and structure-
activity relationships of a new model of arylpiperazines. 2. Three-
dimensional quantitative structure-activity relationships of
hydantoin-phenylpiperazine derivatives with affinity for 5-HT1A
and R1 receptors. A comparison of CoMFA models. J. Med. Chem.
1997, 40, 1648-1656. (b) Brown, M. L.; Zha, C. C.; Van Dyke,
C. C.; Brown, G. B.; Brouillette, W. J. Comparative molecular
field analysis of hydantoin binding to the neuronal voltage-
dependent sodium channel. J. Med. Chem. 1999, 42, 1537-1545.

(18) Knight, J. L.; Weaver, D. F. A computational quantitative
structure-activity relationship study of carbamate anticonvul-
sants using quantum pharmacological methods. Seizure 1998,
7, 347-354.

(19) Lopez-Rodriguez, M. L.; Morcillo, M. J.; Fernandez, E.; Rosado,
M. L.; Pardo, L.; Schaper, K. J. Synthesis and structure-activity
relationships of a new model of arylpiperazines. 6. Study of the
5-HT1A/R1-adrenergic receptor affinity of classical Hansch analy-
sis, artificial neural networks, and computational simulation of
ligand recognition. J. Med. Chem. 2001, 44, 198-207.

(20) Estrada, E.; Peña, A. In silico studies for the rational discovery
of anticonvulsant compounds. Bioorg. Med. Chem. 2000, 8,
2755-2770.

(21) Allen, F. H.; Davies, J. E.; Galloy, J. J.; Johnson, O.; Kennard,
O.; Macrae, C. F.; Mitchell, E. M.; Mitchell, G. F.; Smith, J. M.;
Watson, D. G. The Development of Versions 3 and 4 of the
Cambridge Structural Database System. J. Chem. Inf. Comput.
Sci. 1991, 31, 187-204.

(22) Allen, F. H.; Bellard, S.; Brice, M. D.; Cartwright, B. A.;
Doubleday, A.; Higgs, H.; Hummelink, T.; Hummelink-Peters,
B. G.; Kennard, O.; Motherwell, W. D. S.; Rodgers, J. R.; Watson,
D. G. The Cambridge Crystal Data Centre: Computer-Based
Search, Retrieval, Analysis, and Display of Information. Acta
Crystallogr., Sect B: Struct., Crystallogr. Cryst. Chem. 1979,
B35, 2331-2339.

(23) Rusinko, A., III; Skell, J. M.; Balducci, R.; McGarity, C. M.;
Pearlman, R. S. Concord, a Program for the Rapid Generation
of High Quality Approximate 3-Dimensional Molecular Struc-
tures; The University of Texas at Austin and Tripos Associates:
St. Louis, MO, 1988.

(24) Pearlman, R. S. Rapid generation of high quality approximate
3D molecular structures. Chem. Des. Autom. News 1987, 2, 1-6.

(25) Marshall, G. R.; Barry, C. D.; Bosshard, H. E.; Dammkoehler,
R. A.; Dunn, D. A. In Computer-Assisted Drug Design; Olson,
E. C. Christoffersen, R. E.. Eds.; American Chemical Society,
Washington, DC, 1979; Vol. 112, pp 205-226.

(26) Marshall, G. R.; Cramer, R. D., III Three-dimensional structure-
activity relationships. TIPS Rev. 1988, 9, 285-289.

(27) Kubinyi, H., Folkers, G., Martin, Y. C., Eds. 3D QSAR in drug
design, Kluwer/ESCOM: Dordrecht, The Netherlands, 1998;
Vols. 2, 3.

(28) Cramer, R. D., III; Patterson, D. E.; Bunce, J. D. Comparative
Molecular Field Analysis (CoMFA). 1. Effect of shape on binding
of steroids to carrier proteins. J. Am. Chem. Soc. 1988, 110,
5959-5967.

(29) Tropsha, A.; Zheng, W. Identification of the descriptor pharma-
cophores using variable selection QSAR: Applications to data-
base mining. Curr. Pharm. Des. 2001, 7, 599-612.

(30) Cho, S. J.; Tropsha, A. Cross-validated R2-guided region selection
for comparative molecular field analysis: A simple method to
achieve consistent results. J. Med. Chem. 1995, 38, 1060-1066.

(31) Hoffman, B. T.; Cho, S. J.; Zheng, W.; Wyrick, S.; Nichols, D.
E.; Mailman, R. B.; Tropsha, A. QSAR modeling of dopamine
D1 agonists using comparative molecular field analysis, genetic
algorithms-partial least squares, and K nearest neighbor
methods. J. Med. Chem. 1999, 42, 3217-3226.

(32) Zheng, W.; Tropsha, A. A novel variable selection QSAR ap-
proach based on the K-nearest neighbor principle. J. Chem. Inf.
Comput. Sci. 2000, 40, 185-194.

(33) Golbraikh, A.; Bonchev, D.; Tropsha, A. Novel chirality descrip-
tors derived from molecular topology. J. Chem. Inf. Comput. Sci.
2001, 41, 147-158.

(34) Tropsha, A.; Cho, S. J.; Zheng, W. “New Tricks For an Old
Dog”: Development and application of novel QSAR methods for
rational design of combinatorial chemical libraries and database
mining. In Rational drug design: Novel methodology and
practical applications; Parrill, A. L., Reddy, M. R., Eds.; ACS
Symposium Series 719; American Chemical Society: Washing-
ton, DC, 1999; pp 198-211.

(35) (a) Cho, S. J.; Zheng, W.; Tropsha, A. Rational Combinatorial
Library Design. 2. Rational design of targeted combinatorial
peptide libraries using chemical similarity probe and the inverse
QSAR approaches. J. Chem. Inf. Comput. Sci. 1998, 38, 259-
268. (b) The method is described in detail and can be executed
on the QSAR Web server at http://mmlin1.pha.unc.edu/∼jin/
QSAR.

(36) Golbraikh, A.; Tropsha, A. Beware of q2! J. Mol. Graphics Modell.
2002, 20, 269-276.

(37) Synge, R. L. M. Experiments on amino-acids. I. The partition of
acetamino-acids between immiscible solvents. Biochem. J. 1939,
33, 1913-1917.

(38) Anderson, G. W.; Zimmerman, J. E.; Callahan, F. M. A reinves-
tigation of the mixed carbonic anhydride method of peptide
synthesis. J. Am. Chem. Soc. 1967, 87, 5012-5017.

(39) LeTiran, A.; Stables, J. P.; Kohn, H. Functionalized amino acid
anticonvulsants. Synthesis and pharmacological evaluation of
conformationally restricted analogues. Bioorg. Med. Chem. 2001,
9, 2693-2708.

(40) Akikusa, N.; Mitsui, K.; Sakamoto, T.; Kikugawa, Y. A new
formylating reagent: N-(diethylcarbamoyl)-N-methoxyforma-
mide. Synthesis 1992, 1058-1060.

(41) The program Sybyl is available from Tripos Associates, St. Louis,
MO.

(42) Randic, M. On characterization of molecular branching. J. Am.
Chem. Soc. 1975, 97, 6609-6615.

(43) Kier, L. B.; Hall, L. H. Molecular Connectivity in Chemistry and
Drug Research; Academic Press: New York, 1976.

(44) Molconn-Z, version 3.5; Hall Associates Consulting: Quincy, MA.
(45) Carhart, R. E.; Smith, D. H.; Venkataraghavan, R. Atom pairs

as molecular features in structure-activity studies: definition
and applications. J. Chem. Inf. Comput. Sci. 1985, 25, 64-73.

(46) GenAP Program Manual, Laboratory for Molecular Modeling;
University of North Carolina: Chapel Hill, NC.

(47) Sharaf, M. A.; Illman, D. L.; Kowalski, B. R. Chemometrics; John
Wiley & Sons: New York, 1986.

(48) Dunn, W. J., III; Wold, S.; Edlund, U.; Hellberg, S.; Gasteiger,
J. Multivariate structure-activity relationships between data
from a battery of biological tests and an ensemble of structure
descriptors: the PLS method. Quant. Struct.-Act. Relat. 1984,
3, 131-137.

(49) Gilbert, N. Statistics; W. B. Saunders, Co.: Philadelphia, PA,
1976.

(50) Hall, L. H.; Mohney, B. K.; Kier, L. B. The electrotopological
state: an atom index for QSAR. Quant. Struct.-Act. Relat, 1991,
10, 43-51.

(51) http://search.nci.nih.gov/search97cgi/s97_cgi
(52) (a) Krall, R. L.; Perry, J. K.; White, B. G.; Kupferberg, H. J.;

Swinyard, E. A. Antiepileptic drug development: II. Anticon-
vulsant drug screening. Epilepsia, 1978, 19, 409-428. (b)
Stables, J. P.; Kupferberg, H. J. The NIH anticonvulsant drug
development (ADD) program: preclinical anticonvulsant screen-
ing project. In Molecular and Cellular Targets for Antiepileptic
Drugs; Avanzini, G., Tanganelli, P., Avoli, M., Eds.; John
Libbey: London, 1997; pp 191-198.

2822 Journal of Medicinal Chemistry, 2002, Vol. 45, No. 13 Shen et al.



(53) White, H. S.; Woodhead, J. H.; Franklin, M. R. In Antiepileptic
Drugs; Levy, R. H., Meldrum, B. S., Eds.; Raven: New York,
1998; pp 99-100.

(54) Finney, D. J. Probit Analysis, 3rd ed.; Cambridge University
Press: London, 1971.
JM010488U

Analysis of Anticonvulsant Agents Journal of Medicinal Chemistry, 2002, Vol. 45, No. 13 2823


